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SUMMARY

We propose a multilevel preconditioning strategy for the iterative solution of large sparse linear
systems arising from a finite element discretization of the radiation diffusion equations. In particular,
these equations are solved using a mixed finite element scheme in order to make the discretization
discontinuous, which is imposed by the application in which the diffusion equation will be embedded.
The essence of the preconditioner is to use a continuous finite element discretization of the original,
elliptic diffusion equation for preconditioning the discontinuous equations. We have found that this
preconditioner is very effective and makes the iterative solution of the discontinuous diffusion equations
practical for large problems. This approach should be applicable to discontinuous discretizations
of other elliptic equations. We show how our preconditioner is developed and applied to radiation
diffusion problems on unstructured, tetrahedral meshes and show numerical results that illustrate its
effectiveness. Copyright c© 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we describe a preconditioning method for a mixed, discontinuous finite element
discretization of the equations describing radiation diffusion. We are interested in solving these
equations in order to accelerate the convergence of an outer radiation transport iteration. The
discretized transport equation results in linear systems that are far too large to be solved
by direct methods. A widely used solution approach in the transport community is source
iteration, or transport sweep method, which is a stationary iterative scheme based on a simple
splitting of the transport operator; see for example [1-3]. This iteration can converge quite
slowly for certain important classes of problems. In such cases it is impractical to solve the
transport problem without some kind of acceleration. The most effective and well–known
technique is based on a solution of the radiation diffusion equations. This is known in the
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neutron transport community as Diffusion Synthetic Acceleration, or DSA; see [4]. Therefore,
an efficient and robust solution of the radiation diffusion equations can make solution to the
radiation transport equation feasible in those types of problems.

It is well known that the discretization of the radiation diffusion equations must be consistent

with the discretization of the transport equations for the acceleration method to be robust,
effective and unconditionally stable [5]. In our applications, we use a linear discontinuous finite
element spatial discretization of the transport equation on unstructured meshes. Discontinuous
transport discretizations are often used for difficult problems because of their robustness and
accuracy; see for example [6] and the references therein. Consistency requires us to use a
similar discontinuous discretization of the radiation diffusion equations. The second–order
operator that describes the steady–state diffusion of radiation is written as a coupled system
of first–order equations, referred to as the P1 equations. The P1 equations are discretized using
an “upwind” mixed, linear discontinuous Galerkin method, denoted by dG(1), similar to the
Local Discontinuous Galerkin (LDG) method of [7].

The discontinuous P1 equations form a linear system that can be quite large, even for
modestly sized meshes. We found direct solution methods were impractical for these large
linear systems so we use preconditioned Krylov iterative methods instead. Our multilevel
preconditioner is based on a linear continuous Galerkin finite element discretization, denoted
by cG(1), of the second–order form of the radiation diffusion equation. This lies at the lowest
level of the preconditioning technique. A relaxation–based smoother is used before projecting
the residual from the discontinuous representation to the lower–order continuous finite element
representation which is used as the right-hand side for the approximate iterative solution of
the cG(1) linear system with the method of conjugate gradients (CG). The result is then
interpolated back onto the discontinuous representation, followed by another relaxation. We
have found that our preconditioning technique, while not quite optimal, is very effective.
Furthermore, we found that our multilevel preconditioner performs best in just the kind of
problems for which acceleration of the transport solution is needed.

We believe that the approach of using a cG(k) method to precondition a mixed dG(k)
method can be generalized to k > 1. Recently, there has been quite a bit of interest in mixed
discontinuous Galerkin methods for the solution of fluid flow and other problems (see [8] for a
survey) and we would like to emphasize the possibility of using our approach to create efficient
preconditioners for these applications.

The work reported here extends our initial implementation in two-dimensional Cartesian
geometry [9] to three-dimensional, unstructured tetrahedral meshes using the host transport
code AttilaV2 [6]. Application of our preconditioned solution of the discontinuous P1 equations
to the acceleration of the transport iterations in AttilaV2, including analysis and numerical
results, is found in [10].

The paper is organized as follows. In the next section, we will present the discretized P1

equations on tetrahedra. This is followed by a brief discussion of the Krylov iterative methods
and other issues for solving our linear systems. The next section presents the details of our
multilevel preconditioning approach. Numerical experiments and results follow that and the
paper concludes with some summary remarks.
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2. RADIATION DIFFUSION EQUATIONS

The radiation diffusion equations, or P1 equations, are a system of linear first order equations
for the scalar flux and current vector, which are the first two angular moments, respectively,
of the transport angular flux. In steady state, they are equivalent to a second order diffusion
equation, but we must work with the first order system because the discontinuous discretization
cannot be applied directly to the diffusion equation.

The time–independent P1 equations are

∇Φ(r) + 3σt(r) J(r) = 3Q1(r) (1a)

∇ · J(r) + σa(r) Φ(r) = Q0(r), (1b)

on some domain r ∈ Ω, where Φ(r) is the scalar flux and the current vector is J(r) and σt(r)
and σa(r) are non–negative functions.

We employ a dG(1) discretization of the P1 equations on tetrahedral meshes to be consistent
with the linear discontinuous discretization used in the host transport code AttilaV2. The trial
functions on a mesh cell Tk ⊂ Ω are uh ∈ Uh and wh ∈ Wh, where Uh and Wh are both linear
finite element spaces (or P1 − P1). Using Green’s Theorem, the discrete variational problem
reads:

find an approximation to the scalar flux and current on a cell Tk, Φh ∈ Uh and
Jh ∈ Wh, respectively, satisfying

∫

∂Tk

(
n̂ Φb

h

)
· wh dS −

∫

Tk

Φh (∇ · wh) dV + 3σt,k

∫

Tk

Jh · wh dV = 3

∫

Tk

Q1 · wh dV, (2a)

∫

∂Tk

(
n̂ · Jb

h

)
uh dS −

∫

Tk

Jh · ∇uh dV + σa,k

∫

Tk

Φhuh dV =

∫

Tk

Q0uh dV, (2b)

for all uh ∈ Uh and wh ∈ Wh.

The parameters σt,k and σa,k are assumed constant on a cell. The linear approximations uh

and wh have degrees of freedom at the vertices of each cell; they are defined as the limiting
values of the scalar fluxes and current vectors as the vertex is approached from within the cell.

The “boundary” terms are denoted by superscript b. They enable us to introduce
discontinuities into the discretizations. We borrow upwinding techniques from finite volume
discretizations used in fluid flow problems to establish expressions for the (particle) flows
through the tetrahedral faces. Because such flows are not uniquely defined, we have chosen an
upwinding that is based on physical principles [10]. The flows are used to define the boundary
terms as follows. If n̂ is the outwardly directed unit normal vector of an element face, we let

(
n̂ Φb

h

)
= 2n̂

(
(1 + ξ)J+ + (1 − ξ)J−

)
(3a)

n̂ · Jb
h = (1 − ξ)

(
J+ − J−

)
, (3b)

with

J+ =
1

4
Φ+ +

1

2
n̂ · J+ (3c)

J− =
1

4
Φ− −

1

2
n̂ · J−, (3d)
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where “+” denotes quantities on the interior of the cell face and “−” denotes quantities on the
cell adjacent to the cell face. The parameter ξ on a given element face is used to implement
the boundary conditions:

ξ =

{
0 if the face is internal or on vacuum boundary,

1 if face is on a reflective boundary.

The difference between our scheme and the LDG scheme of Cockburn and Shu [7] is in how
we introduce the discontinuous approximation through the boundary terms of the variational
formulation in (2). The definitions of the boundary terms are often referred to as “numerical
fluxes” and several different definitions have been recently put forth; the closest to ours is the
LDG scheme. It has been determined recently that using equal order approximations (k = 1
for both the scalar and vector unknowns) together with our numerical flux definitions gives a
convergent and stable discretization [11]. This is in contrast to some LDG methods and other
mixed finite element methods; see [12] for an up-to-date, unified treatment of the various
discontinuous Galerkin methods, including consistency, stability and convergence issues.

Equations (2) and (3) form an indefinite linear system Hx = b, which we can write in
symmetric form [

A BT

B −C

] [
J

Φ

]
=

[
f

−g

]
(4)

where, in our transport acceleration application, f = 0. The block submatrices A and C

are symmetric positive definite (SPD) and of dimension n and m, respectively. Their size
depends on the dimensionality of the system and the type of mesh cells. Here we consider
three–dimensional tetrahedral meshes consisting of N cells, for which n = 12N and m = 4N .

3. SOLUTION OF THE LINEAR SYSTEM

The solution of linear systems of the form (4) has received considerable attention. Linear
systems of this type arise in a number of applications including fluid flow, structures, electrical
networks, optimization, and others.

We will now present properties of three different formulations of the linear system (4) and
candidate solution strategies based on their properties.

3.1. The symmetric indefinite form.

The system (4) is uniquely solvable, because the coefficient matrix H is nonsingular. Indeed,
[
A BT

B −C

]
=

[
In O

BA−1 Im

] [
A O

O −S

] [
In A−1BT

O Im

]
(5)

where S = BA−1BT + C is the Schur complement of A in H (see below). Because A and S

are SPD, it follows from Sylvester’s law of inertia that H has n positive eigenvalues and m
negative ones. Thus, H is symmetric, nonsingular, and indefinite.

It should be pointed out that in most applications, the submatrix C is symmetric positive
semidefinite (rather than SPD), and frequently C = O, the zero matrix. Nonetheless, most of
the techniques and analysis that have been developed for the case of semidefinite C apply to
our case as well.
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PRECONDITIONING DISCONTINUOUS RADIATION DIFFUSION 5

3.2. The nonsymmetric positive definite form.

Another property of system (4) that is worth pointing out is the following. By changing the
sign of the last m equations in (4) we obtain an equivalent linear system with nonsymmetric
coefficient matrix

H+ =

[
A BT

−B C

]
(6)

and it is easy to check that H+ is positive definite, in the sense that xT H+x > 0 for all
real vectors x 6= 0. This property implies that all the eigenvalues of H+ have positive real
part. Thus, the convex hull of the spectrum of H+ does not contain the origin, a desirable
property for certain nonsymmetric Krylov subspace methods [13]. See [14] for some discussion
of symmetry vs. non–symmetry in the context of saddle point problems.

3.3. The Schur complement form.

The solution of (4) can be reduced to the solution of two linear systems of smaller size involving
the Schur complement matrix S and the A block. The Schur complement arises when block
Gaussian elimination is carried out on (4), leading to the following system for the scalar flux
Φ:

SΦ = (BA−1BT + C)Φ = g − BA−1f , (7)

which can be interpreted as a discontinuous finite element discretization of the diffusion
equation

−∇ ·

(
1

3σt(r)
∇Φ(r)

)
+ σa(r)Φ(r) = Q0 −∇

1

3σt(r)
· Q1 (8)

with suitable boundary conditions. Once the scalar flux Φ has been obtained from (7), the
current vector J can be computed by solving

AJ = f − BT Φ. (9)

3.4. Solution strategies.

In the present work, we will examine the performance of preconditioned Krylov subspace
iterative methods for solving the discontinuous radiation diffusion equations in each of the
various forms presented.

Krylov subspace methods appropriate for symmetric indefinite linear systems include the
MINRES and SYMMLQ algorithms [15] and the simplified QMR method [16]. For MINRES
and SYMMLQ to be used with preconditioning, the preconditioner must be SPD. On the other
hand, the simplified QMR method requires only that the preconditioner be symmetric. We
ended up choosing MINRES for this formulation, because after extensive testing it performed
better and more reliably than the others.

If either the coefficient matrix or the preconditioner is not symmetric then, generally
speaking, a nonsymmetric Krylov subspace method must be used. The methods we have
considered are restarted GMRES, GMRES(m) [17], BiCGStab [18], and TFQMR [19]. We
will see in the following sections that the nonsymmetric formulation (6) is the more natural
one because of the efficiency of our preconditioner in its nonsymmetric form.

We should note that TFQMR as well as both the symmetric and nonsymmetric versions of
QMR, will not considered further in this paper. This is because after much experimentation
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6 J. WARSA, M. BENZI, T. WAREING, AND J. MOREL

we found these methods often exhibited erratic convergence or did not converge, depending
on the type of problem being solved and the variant of QMR chosen (even with look-ahead).
This non–systematic behavior is not acceptable for our purposes because the solution of the P1

equations is itself going to be nested inside one or more other outer iterations. Parameter–free
robustness is therefore a requisite in our applications.

Because S is SPD, CG can be used to solve problems involving (7). In our dG(1)
discretization the matrix S is dense because A−1 is dense, unlike most other LDG methods. It
is therefore not practical to form S explicitly, so at each outer iteration a linear system with
coefficient matrix A is solved using diagonally preconditioned CG (PCG). This is the only
viable approach because direct, sparse factorizations of A proved to be impractical. We will
refer to this solution method as PCG–CG (inner PCG, outer CG).

In summary, we will consider the following three solution approaches:

1. Solve (4) with MINRES.
2. Solve (6) with GMRES(m) or BiCGStab.
3. Solve (7) with PCG–CG.

4. PRECONDITIONING

In order to be effective, a preconditioner must take into account the special structure of
the coefficient matrix H. A number of preconditioners have been proposed for saddle point
problems, and there is a large literature on this topic; see, e.g., [20-28] and the references
therein.

4.1. The two–level preconditioner.

Our approach to preconditioning is motivated by the observation that when a problem
is optically thick (total interaction cross section, σt, large) and diffusive (scattering ratio,
c = σa/σt, small), discontinuities in the solution of the P1 equations disappear (in an integral
sense). This is also the case in the limit of increasing mesh refinement. In both of these
limits, then, the discontinuous solution on either side of the boundary between adjacent cells
approaches the same value, leading us to consider a linear continuous, vertex–centered, cG(1),
finite element discretization of the scalar diffusion equation (8) to precondition the dG(1) finite
element discretization of the P1 equations. This idea is very much like a two–level multigrid
method. The cG(1) finite element space can be thought of as a coarse grid on which the error in
the discontinuous dG(1) finite element space (the fine grid) can be approximated. In the limits
mentioned above, the cG(1) diffusion equation should therefore do a good job of attenuating
low frequency errors present in the dG(1) scalar fluxes.

Applying the preconditioner is analogous to performing one step of a multigrid V–cycle. On
the fine grid, all unknowns (J and Φ) undergo (pre-)smoothing. The coarse level consists of
projection (restriction) onto the vertices. A correction step on this level follows, which entails
solving the cG(1) discretization of (8) with a suitable right-hand side and boundary conditions.
This correction is interpolated back onto the fine level, and a step of (post–)smoothing is
applied. Applying the preconditioner amounts to performing one step of this V–cycle. We
have found that multiple cycles, or multiple pre– or post–smoothing operations in a cycle,
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PRECONDITIONING DISCONTINUOUS RADIATION DIFFUSION 7

are not necessary in that they do not improve convergence enough to justify the additional
computation.

While the idea of preconditioning higher order finite elements with elements of lower order
is well established, to the best of our knowledge the use of continuous finite elements to
precondition discontinuous finite elements as suggested here is new. The preconditioner is
displayed in Algorithm 1 for one of the three formulations of our linear system, represented by
F. The algorithm may be viewed as “solving” Mz = y. In the symmetric indefinite formulation

Algorithm 1. Two–Level Preconditioner

z ← 0

r ← y − Fz

z ← z + ωF̃−1r

r ← y − Fz

z ← z + Gr

r ← y − Fz

z ← z + ωF̃−1r

(4) F is replaced by H, in the nonsymmetric formulation (6) F is replaced by H+, and in the
Schur complement formulation (7) F is replaced by S.

Notice the symmetric pre– and post–smoothing operations, where F̃ denotes some simple
approximation of F. This ensures that the preconditioning operator M−1 is nonsingular.
Although the first few steps could be combined into a single operation, we write it this way to
emphasize the V–cycle nature of the algorithm. In the nonsymmetric formulation (6) we take

F̃ to be the cell–wise block diagonal part of H+ (damped block–Jacobi smoothing, denoted

by [BS]), denoted by F̃ = HD
+ . For the symmetric formulations (4) and (7) we set F̃ = I

(Richardson smoothing, denoted by [RS]) for reasons set forth below. In any case, we found
that the value ω = 0.9 for the damping parameter gave good results.

The key to the effectiveness of Algorithm 1 is the sequence of operations represented by
G = PD−1R. It is based on the the cG(1) discretization of the diffusion equation, denoted
by D, and the projection (restriction) and interpolation (prolongation) operations, denoted by
the rectangular matrices R and P. The matrix D is SPD so it can be solved efficiently with
PCG or, perhaps optimally, with an algebraic multigrid (AMG) method (or a combination
of the two methods). In all cases in this work, we use PCG with diagonal preconditioning to
approximately solve linear systems involving D.

The interpolation operation is simple: the discontinuous scalar fluxes surrounding a vertex
are all set to the same value of the continuous diffusion solution at that vertex. While it is
possible to define more complicated interpolations to attack errors in the currents, we have
found that simply leaving the currents alone is adequate and any additional improvement in
convergence is minor (and less efficient overall).

The projection operator is relatively more complicated. We find it by deriving the cG(1)
discretization of the diffusion equation (8) directly from the dG(1) P1 equations. We start with
the assumption that discontinuous quantities in the dG(1) discretization of the P1 equations
are actually continuous. That is, in (2), we no longer use the upwind definition of the boundary
terms given by (3). Instead the boundary terms are given the same values in both cells that
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8 J. WARSA, M. BENZI, T. WAREING, AND J. MOREL

share a given face. The remaining within–cell quantities are also assumed to reside on the
cell vertices. We combine the moment equations (2a) for cell k to eliminate the currents in
favor of the scalar fluxes in the balance equations (2a). The manipulations are carried out
with a vector of discontinuous unknowns, r, on the right-hand side of (2). Details of this
procedure in two dimensional rectangular cells may be found in [9]. We are left with four
discrete diffusion equations at every vertex on a cell which is the standard cG(1) finite element
diffusion equation discretization. The right-hand side that is left defines the “appropriate”
projection from the higher dimensional discontinuous space to the continuous space. Omitting
details of the derivation, the final result for a vertex j is

aj

27σt,kVk

·

( 4∑

i=1

ai φi

)
+

σa,kVk

20

(
2φj +

4∑

i=1

i6=j

φi

)
= rj,k −

aj

3σt,kVk

·

( 4∑

i=1

ri,k

)
, (10)

where the vertex–centered unknowns, φj , are given a global ordering of the mesh vertices based
on the cell k and the local index on the cell j. The rj,k terms are the scalar flux components
of r at vertex j in cell k, ri,k are the current vector components, aj is the “area vector” of face
j (face area times unit outward surface normal) and Vk is the volume of cell k. The matrix D

is assembled (in the usual continuous finite element manner) by summing the contributions to
(10) over all cells in the mesh. The form of the right hand side after summation defines the
projection operation.

The preconditioning algorithm represents the operator M−1, which can be written explicitly
as

M−1 = 2I − F + (I − ωF̃−1F)G(I − ωF̃−1F). (11)

Because P 6= RT , the preconditioner is nonsymmetric and the preconditioned system will
be nonsymmetric whether it is applied to the solution of either (4) or (6). A symmetric
preconditioner can be obtained by defining P := RT . In solving the Schur complement linear
system (7), note that the currents have been eliminated in favor of the scalar fluxes. Therefore,
the projections and interpolations are simple, symmetric operations, that is, P = RT where
the right-hand side for the linear system assembled from equation (10) involves only scalar

flux components rj,k. In either formulation, setting H̃ = I (Richardson smoothing) enables us
to easily estimate and calculate a suitable scaling for (11) that ensures it is SPD, as required
by both MINRES and PCG.

4.2. Other approaches.

We anticipate that in the future we will have applications involving the radiation diffusion
equations that require us to solve for the current vector. We could use the solution for the scalar
flux from the reduced system in another preconditioned iteration to compute the current vector.
Such an algorithm, which is closely related to Uzawa’s method, has been tested and compared
against solving the full system by other researchers on related (fluid flow) problems; see [24],
for example. They have found situations where either method computes both components of
the solution more efficiently than the other. The overall efficiency depends strongly on the
preconditioner.

A few comments are in order regarding other preconditioning strategies. We note that if
the reduced Schur complement problem could be solved efficiently (optimally), then the full
discontinuous P1 system could be solved efficiently (optimally) using one of the preconditioners
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PRECONDITIONING DISCONTINUOUS RADIATION DIFFUSION 9

suggested recently by Ipsen [28]; see also [26]. For instance, with the preconditioner

M =

[
A O

O S

]
(12)

convergence should be obtained in a very small number of iterations (four, in exact arithmetic),
independent of problem size. The cG(1) diffusion equations can be viewed as an approximation
to the Schur complement that might be used to replace S in this expression and lead to a more
efficient algorithm overall. This is an interesting area for future exploration. Also, note that
none of the algebraically–constructed preconditioners we tried displayed anything close to
the efficiency of our approach. This included traditional incomplete factorizations and several
different variations of sparse approximate inverses and AMG. We found these methods were
for the most part ineffective and results with using these methods will not be reported here.

4.3. Inner–outer iteration strategy.

All the solution approaches involve an inner–outer Krylov iteration. The inner iteration is the
diagonally–preconditioned PCG iteration for the cG(1) diffusion equation discretization. In
the case of the Schur complement there is an intermediate iteration to compute the action of
the matrix block A on a vector as well. It is possible to improve the overall solution efficiency
of inner–outer iterations by altering the convergence tolerance of the PCG iterations. We use
an approach for improving the solution efficiency of nested inner–outer Krylov methods first
suggested in [29] and [30]. These papers considered GMRES as the outer iteration, inspired
by the work in [31] where both inner and outer iterations are CG.

As suggested in [29], we set the inner iteration stopping criterion inversely proportional
to the norm of the residual of the outer iteration. We refer to this approach as the “BFG
strategy.” Assuming that at some iteration n the outer residual norm is rn > 0, then we set
the inner stopping criterion εinner according to

εinner =

{
τε if n = 0 (or n mod m = 0)

τ min(1, ε/min(rn, 1)) otherwise

where ε is the outer iteration stopping criterion and m is the restart frequency if the outer
iteration is GMRES(m). The parameter τ is a scaling factor; a very conservative choice is
τ . 1/10. This approach is somewhat contrary to intuition but we found this approach worked
very well. It reduces the number of inner PCG iterations without affecting convergence of the
outer iterations. Theoretical justification underlying the empirically observed success of the
BFG strategy has been recently developed in [32].

4.4. Summary of preconditioned solution methods.

The forms of the linear system and corresponding preconditioned solution methods are
summarized here. The list which follows indicates what matrices are to be used in Algorithm 1
when preconditioning.

1. Solve (4) with preconditioned MINRES; F = H and F̃ = I.
2. Solve (6) with preconditioned GMRES(30) or BiCGStab;

F = H+, and F̃ = HD
+ [BS] or F̃ = I [RS].

3. Solve (7) with PCG–PCG F = S and F̃ = I.

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 99:1–18
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10 J. WARSA, M. BENZI, T. WAREING, AND J. MOREL

The last formulation is denoted by PCG–PCG, indicating the use of PCG for the outer iteration
for (7) as well as the inner iteration with the A block of (7). Recall that in the case that we
are not preconditioning then this formulation is referred to as PCG–CG, as in Section 3.

Because the preconditioner itself involves an (inner) iteration, a flexible outer iteration
method might be necessary. We compared FGMRES(m) [33] to GMRES(m) for several
values of m and found it made little difference in convergence of the nonsymmetric
formulation. We used an implementation of GMRES(m) with iterated modified Gram–Schmidt
orthogonalization. A flexible CG method [34] may or may not improve the performance of the
Schur complement formulation, although we have not implemented this method at this time.

5. NUMERICAL RESULTS

We will now present a series of numerical experiments that contrast and compare the
performance of the various solution methods with and without preconditioning. In all problems,
a random scalar flux source, that is, g 6= 0 and f = 0, is distributed throughout the problem
domains. This is close to the type of sources we can expect to get from transport applications.
Other applications would typically have source terms for the vector components f as well,
however.

The first set of numerical experiments is a scaling study on a tetrahedral mesh. The mesh
consists of a cube, one cm on a side, divided into f equal–width “boxes” each dimension.
Each box is further divided into six tetrahedra for a total number of cells of 6f 3. With
sixteen unknowns per cell, the number of unknowns in the problem scales as 96f 3. Boundary
conditions are reflection on the x = 0, y = 0 and z = 0 faces of the problem and vacuum
on the remaining three faces. The total cross section is σt = 3.5 cm−1 and the absorption
cross section is σa = 0.001 × 3.5 cm−1 (i.e., the scattering ratio is c = 0.999). The problem
is solved using the nonsymmetric formulation with a relative convergence stopping criterion
of 10−5 for the GMRES(30) outer iterations. The BFG strategy with τ = 10−2 is used to
define the PCG inner iteration stopping criterion. Results are shown in Figs. 1 and 2 as a
function of problem size on a linear scale giving some indication of how the preconditioning
method scales. First, note that Fig. 1 shows that the preconditioner significantly reduces the
number of iterations. This number does grow, albeit slowly, with problem size. Second, Fig. 2
shows the number of total floating point operations (FLOP) per unknown. Measurements
for solutions without preconditioning are compared against those in which the block Jacobi
matrices are factored and stored initially for subsequent use (more efficient) as well as those in
which the blocks are factored at every iteration (less storage). A flat curve would be considered
computationally optimal. Computing the inverse blocks at every iteration is not competitive.
When they are stored and used in the preconditioner the preconditioned solution is computed
with about 25–30% less work per unknown compared to no preconditioning. Overall, however,
the preconditioner is not optimal as the work per unknown is also increasing with problem
size. This is in part due to the fact that the inner PCG iterations are not optimal. This could
be addressed by implementing an optimal AMG method which should improve the overall
optimality of the preconditioned solution.

The next set of numerical experiments have the same problem specifications as before except
that we vary the total cross section σt and keep c fixed, to see how the preconditioned solution
scales with this parameter. The problem becomes more diffusive and the preconditioner
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Figure 1. Number of GMRES(30) iterations as a function of problem size.
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Figure 2. Total floating point operations per unknown as a function of problem size.
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becomes more effective as σt increases because the difference in the discontinuous solution
between any two adjacent cells disappears (in a weighted integral sense), in which case the
solution is better approximated by the continuous diffusion solution. This scaling is also
important for our transport applications because it is just such highly diffusive problems
for which acceleration is needed. This observation is borne out by the results shown in
Figs. 3 and 4, where the number of iterations and computational effort measured by FLOP
count are shown for a fixed characteristic grid dimension, in this case h = 1/20. Results are
shown for the three formulations, with and without preconditioning.

The preconditioned GMRES(30) solution with block Jacobi smoothing ([BS]) is
computationally efficient and has a faster convergence rate than all the other methods with
the exception of the GMRES(30) with the Richardson smoother ([RS]) in the case of large σt.
This is because in the limit of very large total cross section the continuous diffusion solution
approximates the discontinuous solution very well and the only role of the smoother is to keep
the preconditioner nonsingular.
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Figure 3. Number of iterations as a function of total cross section, illustrating how the
preconditioner scales with the diffusivity of the problem.

The final results we show are for a problem with multiple materials and complicated
geometry that models an oil well neutron logging tool. It is a reflected half–cylinder, 140 cm
tall and 60 cm in radius consisting of 43,012 tetrahedral cells. An illustration of the mesh is
shown in Fig. 5. Most of the problem is earth that surrounds the oil well bore hole in the center
of the cylinder. Inside the bore hole, assumed to be filled with air, is the instrument package
containing a neutron source and two He-3 neutron detectors. We took this configuration from
a full, energy dependent transport calculation described in [35]. This single energy problem is
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Figure 4. Total floating point operations as a function of total cross section, illustrating how
the preconditioner scales with the diffusivity of the problem.

intended to illustrate how our preconditioner performs on a realistic mesh with realistic cross
sections. In Fig. 6 we show the convergence history for the nonsymmetric formulation with
GMRES(30) and BiCGStab. The CPU times on a 550 Mhz Xeon PIII processor are shown
alongside the convergence curves to get some idea of the relative computational effort. We also
show the results of using only block Jacobi iterations as a preconditioner. In those cases, the
preconditioner consisted solely of taking either one or two block Jacobi iterations. This shows
that the continuous diffusion solution plays a significant role in preconditioning the iterative
solution. Figure 7 shows the convergence history of those methods for which the iterative
solution did not converge after 2500 iterations. That indicates preconditioning is absolutely
essential for this problem and our experience with even larger problems further indicates that
this is a fairly typical result. From this, we conclude that for practical problems we can indeed
compute solutions to the dG(1) P1 equations efficiently.

Finally, we show how the number of inner CG iterations changes over the course of the outer
iterations using the BFG strategy with different values of τ in Fig. 8. This illustrates that we
can in fact save some computational cycles through the use of this strategy (with no effect
on the outer convergence rate whatsoever). While it may not be as important on tetrahedral
meshes because there are so many fewer nodes than cells (typically a factor of 4–5) and the
CG linear systems are therefore relatively small, this could have a much greater impact on
hexahedral meshes, for example.
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14 J. WARSA, M. BENZI, T. WAREING, AND J. MOREL

Figure 5. Oil well neutron logging tool mesh, 140 cm tall, 60 cm radius. The bore hole is
surrounded by “earth”. There is an off–center instrument package that contains the
neutron source and two neutron detectors. A reflective symmetry boundary condition
is imposed on the half cylinder to reduce computation time.

6. CONCLUSIONS

We have found that our preconditioning method is very effective in reducing the effort
in computing iterative solutions of the dG(1) radiation diffusion, or P1, equations. The
preconditioner is based on the relatively small, SPD matrix of the cG(1) diffusion equation
discretization, and the inner PCG iterations are therefore also computed fairly efficiently.
Numerical results showed that overall the preconditioner is quite efficient and close to optimal.
As a result, even though we didn’t illustrate it here, other algebraic preconditioners could not
at this time be considered competitive. Of the possible formulations of the problem, we found
that solving the the nonsymmetric formulation (6) with GMRES and the nonsymmetric form of
the preconditioner with the block Jacobi smoother was the most reliable and efficient approach.

We would like to again emphasize that our approach is not necessarily limited to the P1

equations discretized with equal–order mixed dG(1) finite elements. It can most likely be
generalized to mixed dG(k) methods for k > 1, or to other types of physical models and
applications, such as the Oseen equations or generalized Stokes flow equations.
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Figure 6. Convergence history of the well logging tool problem illustrating the effectiveness of
the preconditioner based on the cG(1) diffusion equation discretization.
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